
Recurrent Neural Networks (RNNs)

Recap
● MP neuron
● Perceptron
● MLP
● CNNs
● In other words, we have seen feedforward neural nets

○ No loops in the computational graphs

Sequential data
● Many real-world problems have to process data with sequential

nature

Sequential data
● Many real-world problems have to process data with sequential

nature

● Sentiment analysis
● Action recognition
● DNA sequence

classification

Sequence classification

Sequential data
● Many real-world problems have to process data with sequential

nature

● Sentiment analysis
● Action recognition
● DNA sequence

classification

● Text synthesis
● Music synthesis
● Motion synthesis

Sequence classification Sequence Synthesis

Sequential data
● Many real-world problems have to process data with sequential

nature

● Sentiment analysis
● Action recognition
● DNA sequence

classification

● Text synthesis
● Music synthesis
● Motion synthesis

● Machine translation
● PoS tagging

Sequence classification Sequence Synthesis Sequence-to-sequence
translation

Formally

Formally

Sequence classification

Sequence Synthesis

Sequence-to-sequence
translation

Temporal Convolution

Temporal Convolutional Networks

Figure credits: Raushan Roy

RNNs and backprop through time

Key is the recurrent state
● Maintains a recurrent state updated at each time step

Key is the recurrent state
● Maintains a recurrent state updated at each time step

Key is the recurrent state
● Maintains a recurrent state updated at each time step

Key is the recurrent state
● Maintains a recurrent state updated at each time step

State computes the output
● Prediction can be computed at any time step using the recurrent

state

State computes the output
● Prediction can be computed at any time step using the recurrent

state

Recurrence in a graph

Recurrence in a graph

Recurrence in a graph

Recurrence in a graph

Backprop in time

Number of steps is equal to the length of sequence T. The rest is similar to
the DAGs we know, and autograd can handle.

Sample problem

Elman Network (Elman, 1990)

Sequence classification
Class 1 : sequence is concatenation of two identical halves

Class 0: otherwise

Sequence classification
Class 1 : sequence is concatenation of two identical halves

Class 0: otherwise

RNN hands-on

https://colab.research.google.com/drive/1OHmvKM7wINUS9kBDQExY_oDKK4AX-wgN?usp=sharing

While unfolding in time
● What is the depth of the model?

While unfolding in time
● What is the depth of the model?

○ Length of the input

While unfolding in time
● What is the depth of the model?

○ Length of the input

● → vanishing gradient issue

While unfolding in time
● What is the depth of the model?

○ Length of the input

● → vanishing gradient issue
● Introduce a ‘pass-through’

○ recurrent state does not go repeatedly through a squashing nonlinearity

Pass-through
● Recurrent state update can be weighted avg. of previous value

and current full update

Pass-through
● Recurrent state update can be weighted avg. of previous value

and current full update

Acts as a ‘forget’ gate

Gating
● Update equations will now become

LSTM

Assignment
● Improve the sample problem with the updated model

Long-Short Term Memory unit
● Hochreiter and Schmidhuber (1997)
● Later improved by a forget gate (Gers, et al 2000)

Long-Short Term Memory unit
● Hochreiter and Schmidhuber (1997)
● Later improved by a forget gate (Gers, et al 2000)

It uses the structure founded on the short-term processes to create a long-term memory

Long-Short Term Memory unit
● Recurrent state consists of a cell state (ct) and an output state (ht)
● Gate ft modulates if the cell state should be forgotten, it if the new

update should be taken into account
● of if the output state should be reset

Long-Short Term Memory unit
● Recurrent state consists of a cell state (ct) and an output state (ht)
● Gate ft modules if the cell state should be forgotten, it if the new

update should be taken into account
● ot if the output state should be reset

LSTM unit

LSTM layers

torch.nn.LSTM
● Layers D
● Processes sequence of length T and outputs
● Outputs for all the layers at the last time step T: hT

1, hT
2, …. hT

D
● Outputs for the last layer at all the time steps: h1

D, h2
D, …. hT

D

Try LSTM on the toy task
class LSTMNet(nn.Module):
 def __init__(self, dim_input, dim_recurrent, num_layers, dim_output):

super().__init__()
self.lstm = nn.LSTM(input_size = dim_input,hidden_size = dim_recurrent,num_layers =

num_layers)
self.fc_o2y = nn.Linear(dim_recurrent, dim_output)

 def forward(self, input):
Get the last layer's last time step activation
output, _ = self.lstm(input.permute(1, 0, 2))
output = output[-1]
return self.fc_o2y(F.relu(output))

Gated Recurrent Unit (GRU)
● LSTM was simplified by Cho et al. (2014)
● Has a gating for recurrent state
● Also has a reset gate

Gated Recurrent Unit (GRU)

Different sequence tasks

Figure Credit Andrej Karpathy

http://karpathy.github.io/

Many-to-One

Sentiment classification, etc. Figure Credit CS321N, Stanford

One-to-Many

Music generation, image captioning, etc. Figure Credit CS321N, Stanford

Many-to-Many

PoS tagging, etc. Figure Credit CS321N, Stanford

Many-to-Many

Machine Translation, etc. Figure Credit CS321N, Stanford

Course Project presentations
● Wednesday(17 Nov)

○ 11-12 PM
○ 4 teams (T1, T2, T4, T16)

● Saturday (20 Nov)
○ 10AM - 12PM and 2-3 PM
○ 12 teams (rest 12)

Course Project presentations
● ~10 minutes per team

● Slides on
○ Problem detailing
○ Proposed solution/Analysis performed
○ Code walkthrough

Thank You

