
Recurrent Neural Networks (RNNs)



Recap
● MP neuron
● Perceptron
● MLP
● CNNs
● In other words, we have seen feedforward neural nets

○ No loops in the computational graphs
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Sequential data
● Many real-world problems have to process data with sequential 

nature

● Sentiment analysis
● Action recognition
● DNA sequence 

classification

● Text synthesis
● Music synthesis
● Motion synthesis

● Machine translation
● PoS tagging

Sequence classification Sequence Synthesis Sequence-to-sequence 
translation



Formally



Formally

Sequence classification

Sequence Synthesis

Sequence-to-sequence 
translation



Temporal Convolution



Temporal Convolutional Networks

Figure credits: Raushan Roy



RNNs and backprop through time
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Backprop in time

Number of steps is equal to the length of sequence T. The rest is similar to 
the DAGs we know, and autograd can handle.



Sample problem



Elman Network (Elman, 1990)



Sequence classification
Class 1 : sequence is concatenation of two identical halves

Class 0: otherwise



Sequence classification
Class 1 : sequence is concatenation of two identical halves

Class 0: otherwise



RNN hands-on

https://colab.research.google.com/drive/1OHmvKM7wINUS9kBDQExY_oDKK4AX-wgN?usp=sharing
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While unfolding in time
● What is the depth of the model?

○ Length of the input

● → vanishing gradient issue
● Introduce a ‘pass-through’ 

○ recurrent state does not go repeatedly through a squashing nonlinearity



Pass-through
● Recurrent state update can be weighted avg. of previous value 

and current full update



Pass-through
● Recurrent state update can be weighted avg. of previous value 

and current full update

Acts as a ‘forget’ gate



Gating
● Update equations will now become



LSTM



Assignment
● Improve the sample problem with the updated model



Long-Short Term Memory unit
● Hochreiter and Schmidhuber (1997)
● Later improved by a forget gate (Gers, et al 2000)



Long-Short Term Memory unit
● Hochreiter and Schmidhuber (1997)
● Later improved by a forget gate (Gers, et al 2000)

It uses the structure founded on the short-term processes to create a long-term memory



Long-Short Term Memory unit
● Recurrent state consists of a cell state (ct) and an output state (ht)
● Gate ft modulates if the cell state should be forgotten, it if the new 

update should be taken into account
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LSTM unit



LSTM layers



torch.nn.LSTM 
● Layers D
● Processes sequence of length T and outputs
● Outputs for all the layers at the last time step T: hT

1, hT
2, …. hT

D 
● Outputs for the last layer at all the time steps: h1

D, h2
D, …. hT

D 



Try LSTM on the toy task
class LSTMNet(nn.Module):
  def __init__(self, dim_input, dim_recurrent, num_layers, dim_output):

super().__init__()
self.lstm = nn.LSTM(input_size = dim_input,hidden_size = dim_recurrent,num_layers = 

num_layers)
self.fc_o2y = nn.Linear(dim_recurrent, dim_output)

  def forward(self, input):
# Get the last layer's last time step activation
output, _ = self.lstm(input.permute(1, 0, 2))
output = output[-1]
return self.fc_o2y(F.relu(output))



Gated Recurrent Unit (GRU)
● LSTM was simplified by Cho et al. (2014) 
● Has a gating for recurrent state
● Also has a reset gate



Gated Recurrent Unit (GRU)



Different sequence tasks

Figure Credit Andrej Karpathy

http://karpathy.github.io/


Many-to-One

Sentiment classification, etc. Figure Credit CS321N, Stanford



One-to-Many

Music generation, image captioning, etc. Figure Credit CS321N, Stanford



Many-to-Many

PoS tagging, etc. Figure Credit CS321N, Stanford



Many-to-Many

Machine Translation, etc. Figure Credit CS321N, Stanford



Course Project presentations
● Wednesday(17 Nov) 

○ 11-12 PM
○ 4 teams (T1, T2, T4, T16)

● Saturday (20 Nov)
○ 10AM - 12PM and 2-3 PM
○ 12 teams (rest 12)



Course Project presentations
● ~10 minutes per team

● Slides  on
○ Problem detailing
○ Proposed solution/Analysis performed
○ Code walkthrough



Thank You


