Recurrent Neural Networks (RNNs)

Recap

- MP neuron
- Perceptron
- MLP
- CNNs
- In other words, we have seen feedforward neural nets
 - No loops in the computational graphs

• Many real-world problems have to process data with sequential nature

- Many real-world problems have to process data with sequential nature
 - Sentiment analysis
 - Action recognition
 - DNA sequence classification

Sequence classification

- Many real-world problems have to process data with sequential nature
 - Sentiment analysis
 - Action recognition
 - DNA sequence classification

- Text synthesis
- Music synthesis
- Motion synthesis

Sequence classification

Sequence Synthesis

- Many real-world problems have to process data with sequential nature
 - Sentiment analysis
 - Action recognition
 - DNA sequence classification

- Text synthesis
- Music synthesis
- Motion synthesis

- Machine translation
- PoS tagging

Sequence classification

Sequence Synthesis

Sequence-to-sequence translation

Formally

Given a set \mathcal{X} , and if $S(\mathcal{X})$ is the set of sequences of elements from \mathcal{X}

$$S(\mathcal{X}) = \bigcup_{t=1}^{\infty} \mathcal{X}^t$$

Formally

Given a set \mathcal{X} , and if $S(\mathcal{X})$ is the set of sequences of elements from \mathcal{X}

$$S(\mathcal{X}) = \bigcup_{t=1}^{\infty} \mathcal{X}^t$$

$$f: S(\mathcal{X}) \to \{1, \dots, C\}$$
$$f: \mathcal{R}^D \to S(\mathcal{X})$$
$$f: S(\mathcal{X}) \to S(\mathcal{Y})$$

Sequence classification

Sequence Synthesis

Sequence-to-sequence translation

Temporal Convolution

Temporal Convolutional Networks

Figure credits: Raushan Roy

RNNs and backprop through time

• Maintains a recurrent state updated at each time step

• Maintains a recurrent state updated at each time step

With $\mathcal{X} = \mathcal{R}^D$, and given, $\phi(\cdot; w) : \mathcal{R}^D \times \mathcal{R}^Q \to \mathcal{R}^Q$,

• Maintains a recurrent state updated at each time step

With $\mathcal{X} = \mathcal{R}^D$, and given, $\phi(\cdot; w) : \mathcal{R}^D \times \mathcal{R}^Q \to \mathcal{R}^Q$, an input sequence $x \in \mathcal{S}(\mathcal{R}^D)$, an initial recurrent state $h_0 \in \mathcal{R}^Q$,

• Maintains a recurrent state updated at each time step

With $\mathcal{X} = \mathcal{R}^D$, and given, $\phi(\cdot; w) : \mathcal{R}^D \times \mathcal{R}^Q \to \mathcal{R}^Q$, an input sequence $x \in \mathcal{S}(\mathcal{R}^D)$, an initial recurrent state $h_0 \in \mathcal{R}^Q$,

model computes sequence of recurrent states iteratively $\forall t = 1, \dots, T(x), h_t = \phi(x_t, h_{t-1}; w)$

State computes the output

• Prediction can be computed at any time step using the recurrent state

State computes the output

• Prediction can be computed at any time step using the recurrent state

$$y_t = \psi(h_t; w)$$

$$\psi(\cdot; w): \mathcal{R}^Q \to \mathcal{R}^C$$

Backprop in time

Number of steps is equal to the length of sequence T. The rest is similar to the DAGs we know, and autograd can handle.

Sample problem

Elman Network (Elman, 1990)

$$h_0 = 0$$

$$h_t = \text{ReLU} (W_{xh}x_t + W_{hh}h_{t-1} + b_h)$$

$$y_t = W_{hy}h_t + b_y$$

Sequence classification

Class 1: sequence is concatenation of two identical halves

Class 0: otherwise

Sequence classification

Class 1 : sequence is concatenation of two identical halves

Class 0: otherwise

 $\begin{array}{c} x \to y \\ (1,2,3,4,5,6) \to 0 \\ (3,9,9,3) \to 0 \\ (7,4,4,7,5,4) \to 0 \\ (7,7) \to 1 \\ (1,2,3,1,2,3) \to 1 \\ (5,1,1,2,5,1,1,2) \to 1 \end{array}$

• What is the depth of the model?

- What is the depth of the model?
 - Length of the input

- What is the depth of the model?
 - Length of the input
- \rightarrow vanishing gradient issue

 $h_0 = 0$ $h_t = \text{ReLU} (W_{xh}x_t + W_{hh}h_{t-1} + b_h)$

- What is the depth of the model?
 - Length of the input
- \rightarrow vanishing gradient issue
- Introduce a 'pass-through'
 - recurrent state does not go repeatedly through a squashing nonlinearity

Pass-through

• Recurrent state update can be weighted avg. of previous value and current full update

$$h_t = z_t \odot h_{t-1} + (1 - z_t) \odot \bar{h}_t$$

where,
$$\bar{h}_t = \phi(x_t, h_{t-1})$$
 and
weight $z_t = f(x_t, h_{t-1})$

Pass-through

• Recurrent state update can be weighted avg. of previous value and current full update

$$h_t = z_t \odot h_{t-1} + (1 - z_t) \odot \bar{h}_t$$

where,
$$\bar{h}_t = \phi(x_t, h_{t-1})$$
 and
weight $z_t = f(x_t, h_{t-1})$
Acts as a 'forget' gate

Gating

• Update equations will now become

$$\begin{split} h_0 = 0 \\ \bar{h}_t &= \text{ReLU} \left(W_{xh} x_t + W_{hh} h_{t-1} + b_h \right) \text{(full update)} \\ z_t &= sigm(W_{xz} x_t + W_{hz} h_{t-1} + b_z) \text{(forget gate)} \\ h_t &= z_t \odot h_{t-1} + (1 - z_t) \odot \bar{h}_t \text{(recurrent state)} \\ y_t &= W_{hy} h_t + b_y \text{(output)} \end{split}$$

LSTM

Assignment

• Improve the sample problem with the updated model

- Hochreiter and Schmidhuber (1997)
- Later improved by a forget gate (Gers, et al 2000)

- Hochreiter and Schmidhuber (1997)
- Later improved by a forget gate (Gers, et al 2000)

It uses the structure founded on the short-term processes to create a long-term memory

- Recurrent state consists of a cell state (c_t) and an output state (h_t)
- Gate ${\rm f}_{\rm t}$ modulates if the cell state should be forgotten, ${\rm i}_{\rm t}$ if the new update should be taken into account
- o_f if the output state should be reset

- Recurrent state consists of a cell state (c_t) and an output state (h_t)
- Gate f_t modules if the cell state should be forgotten, i_t if the new update should be taken into account
- o_t if the output state should be reset

 $f_t = sigm(W_{xf}x_t + W_{hf}h_{t-1} + b_f)$ $i_t = sigm(W_{xi}x_t + W_{hi}h_{t-1} + b_i)$ $o_t = sigm(W_{xo}x_t + W_{ho}h_{t-1} + b_o)$

 $g_t = tanh(W_{xc}X_t + W_{hc}h_{t-1} + b_c)$ $c_t = f_t \odot c_{t-1} + i_t \odot g_t$ $h_t = o_t \odot tanh(c_t)$

LSTM unit

LSTM layers

torch.nn.LSTM

- Layers D
- Processes sequence of length T and outputs
- Outputs for all the layers at the last time step T: h_T^{-1} , h_T^{-2} , ..., h_T^{-D}
- Outputs for the last layer at all the time steps: h_1^D , h_2^D , ..., h_T^D

Try LSTM on the toy task

```
class LSTMNet(nn.Module):
    def __init__(self, dim_input, dim_recurrent, num_layers, dim_output):
        super().__init__()
        self.lstm = nn.LSTM(input_size = dim_input, hidden_size = dim_recurrent, num_layers =
        num_layers)
        self.fc_o2y = nn.Linear(dim_recurrent, dim_output)
        def forward(self, input):
            # Get the last layer's last time step activation
        output, _ = self.lstm(input.permute(1, 0, 2))
        output = output[-1]
        return self.fc o2y(F.relu(output))
```

Gated Recurrent Unit (GRU)

- LSTM was simplified by Cho et al. (2014)
- Has a gating for recurrent state
- Also has a reset gate

Gated Recurrent Unit (GRU)

 $r_{t} = sigm(W_{xr}x_{t} + W_{hr}h_{t-1} + b_{r}) \quad (\text{reset gate})$ $z_{t} = sigm(W_{xz}x_{t} + W_{hz}h_{t-1} + b_{z}) \quad (\text{forget gate})$

$$\bar{h}_t = tanh(W_{xh}x_t + W_{hh}(r_t \odot h_{t-1}) + b_h) \quad \text{(full update)}$$
$$h_t = z_t \odot h_{t-1} + (1 - z_t) \odot \bar{h}_t \quad \text{(hidden update)}$$

Different sequence tasks

Figure Credit Andrej Karpathy

Many-to-One

Sentiment classification, etc.

One-to-Many

Music generation, image captioning, etc.

Many-to-Many

PoS tagging, etc.

Many-to-Many

Machine Translation, etc.

Course Project presentations

- Wednesday(17 Nov)
 - 11-12 PM
 - \circ 4 teams (T₁, T₂, T₄, T₁₆)
- Saturday (20 Nov)
 - 10AM 12PM and 2-3 PM
 - 12 teams (rest 12)

Course Project presentations

- ~10 minutes per team
- Slides on
 - Problem detailing
 - Proposed solution/Analysis performed
 - Code walkthrough

Thank You